Contents

SIMPLEGUI User Manual

Gonzalo Hernandez
Universidad de Narino

financed by
Vicerrectoria de Investigaciones - UDENAR

May, 2016

1 Introduction

2 Requirements

3 Getting Started

3.1 Obtain the SimpleGUI APT e e e

3.2 Compiling. e e e e e

3.3 Creating a new SimpleGUI applicationu....

3.3.1
3.3.2
3.3.3

3.34

SimpleGUI Frame i e e e e
SimpleGUI Widgets o v i e e e e e e e e e e e
Event programming vt vttt e e e e e e e e e

Sending message to SimpleGUI widgets

1 Introduction

SimpleGUI is an API created to be used like a base to implement Graphic User Interfaces (GUI)
whereas a programmer is coding in C++, this GUI can be fabricated without to depend of any
other software (Qt, GTK, etc) more than X Window System platform. X Window System is the
graphic server used by unix-like operative systems to open a graphic session.

SimpleGUI aims to help to an programmer user when the target computer have no a special
software to show graphic interfaces by mean objects like a buttons, labels, textbox, etc. All of
them are designed to use the miminum resources of system, so its look is very clean.

SimpleGUI has the basic objects needed to create simple lightweight interfaces whereas the user
is programming in C++ an over a unix-like platform.

2 Requirements

Due to SimpleGUI was implemented over X Window System , this API only is possible to use over
Unix-like operative systems. Linux distributions are the best target to this applications, Mac is
supported too by means the xQuarts project.

Is necessary to have installed the appropriate packages to use X Window System . Xorg is the
common implementation of this graphic system, some Linux distributions require to install Xlib
libraries too.

SimpleGUI is created over C++, so is necessary to have this development tools, g++ is the common
implementation of C++.

Will be useful to have an IDE like Geany, CodeBlocks, QtCreato, etc. to programming over C++
and including the SimpleGUI API.

3 Getting Started

SimpleGUI is create to be easy to use, so only is necessary some simple steps to create an applica-
tion.

3.1 Obtaining the SimpleGUI API

SimpleGUI is stored in a public repository using versioning, so it can be obtained from the git repos-
itory: https://github.com/GonzaloHernandez/simplegui/releases. There are three
files availables to download:

The simplegui.h is the main API, and contains all basic graphic objects needed to create an User
Graphic Interface. This API is used by means the respective clause.

https://github.com/GonzaloHernandez/simplegui/releases

| #include "simplegui.h"

The messagebox.h is an auxiliar API (created using simplegui.h) useful to show quick information
to an user. This API can be included at top of code.

| #include "messagebox.h"

The filebrowser.h is a complement applicable to search any file from the current local hard disk.
Its interface show a list of file of some directory. This API must be included to be used.

| #include "filebrowser.h"

3.2 Compiling

To compile whatever SimpleGUI example, is required to pass the argument X11 library. If the
compilation is accomplished from a terminal... the correct commando will be:

g++ -o helloworld helloworld.cpp -1X11

If is used an IDE like a Geany, QtCreator or CodeBlocks, is necessary to set some build options,
the next images show each one of them.

Working with Geany, the configuration is found following the menu Build then click in the Set
Build Commands.

Set Build Commands

Label Command Working directory Reset

C++ commands

1k l Compile l g++ -Wall -c "%f" P]
2 l Build l | g++ -Wall -o "%e” ‘(f‘ -1x11)]
3. [Lint l [cppcheck --language=c++ ——enat [1 X

Using the QtCreator, is necessary edit the project file (*.pro).

‘ helloworld.pro - helloworld - Qt Creator

File Edit Build Debug Analyze

T.. = | ¥ = B = € =
m‘ Fine helloworld.pro
~ [Headers
|| simpleguih
~ [Sources

leq helloworld.cpp

Tools Window Help

Welcome
Edi

‘ ’

SOUR +=\
helloworld. cpp

HEADERS += %
simplegui.h

On CodeBlocks, the option is found in the menu settings, next selection the option Compiler.

helloworld.cpp - Code::Blocks 16.01 x
File Compiler settings X
5 o
E <J Selected compiler B
& GNU GCC Compler =
i k e
[Manag|

efaul Copy Rename Delete Reset defaults ——

-7, lGlobal compiler settings

| A— 4 Compiler settings Linker settings Search directories Toolchain exacutables | *

g‘ Policy: | s, project options onl =
Profiler settings RtToTaTas Other linker options:
F ..

R

3.3 Creating a new SimpleGUI application
This secction will implement a typical “Hello World!” application by means of a guide progressive

process. Is essential to follow and understand each of them before to create a more complex
application.

3.3.1 SimpleGUI Frame

To create a simple frame is needed to create a new class extended or inherited of the Frame class,
the next code, show a simple example of this action.

#include "simplegui.h"

class HelloWorld :public Frame {
public:
HelloWorld() : Frame(100,100,240,60,"My first frame") {
run () ;
}
};

int main() {
HelloWorld ();
}

HelloWorld class inerith all functionality of Frame class. When it class is instanciated, can be
custom some characteristics by means of invocation of the Frame constructor: Frame(x, y, width,
height, title).

HelloWorld class only needs the constructor method, and is necessary to incorporate the method
run() inside of this method. The main() functions create an instance of HelloWorld class. This
program must be showed like a next image.

My first frame x

3.3.2 SimpleGUI Widgets

SimpleGUI offers some basic widgets to be used, in this example will be used a Button class. The
next code show some new lines, to be focused en the new statemes, the code has the old lines
colored with gray.

#include "simplegui.h"

class HelloWorld :public Frame {
private:

Buttonx* greet;

public:

HelloWorld() : Frame(100,100,240,60,"My first frame") {
greet = new Button(20,20,200,20,"Greet!");
add (greet);
run();

i

int main() {
HelloWorld();
}

A new element had bean programmed, the attribute greet is a pointer of Button class. Inside
the HelloWorld constructor is instanciated then added to the frame. Remember to let the run()
instruction at the end of script.

The instanciation statement and the adding statemen can be joint as such is presented in the next
code.

add(greet = new Button(20,20,200,20,"Greet!"));

After execution with these new instructions, the result must be presented such as the next image.

My first frame x

Greet !

3.3.3 Event programming

Now, is time to asign a task to the button, so is necessary to insert some instructions to the
program.

An event is an action recognised by the SimpleGUI that may be handled and programmed belat-
edly, so is necessary to implement a function with the wanted instructions for later be connected
to the button action.

#include "simplegui.h"

class HelloWorld :public Frame {
private:
Button*greet;
public:
HelloWorld() : Frame(100,100,240,60,"My first frame") {
add(greet = new Button(20,20,200,20,"Greet!"));

hello->action = &executeTask;
run() ;
}
private:
static void executeTask () {
exit (0);
¥

I8

int main() {
HelloWorld() ;
}

In this example, has bean created the static method void executeTask(), which will finish the ap-
plication.

This method should tie self to the button action, the hello->action = &executeTask does it.

Now, when the application is running, the final user can be clicked over the button to halt the
application.

3.3.4 Sending message to SimpleGUI widgets

Event Programming is handled by SimpleGUI through connecting static method to some widget
action. Those methods must be static, then is imposible arrive to one attribute of HelloWorld
from coding inside of them.

To solve this impasse, is needed to define an anchor outside of HelloWorld class then link these
anchor with the HelloWorld instance address memory.

#include "simplegui.h"
class HelloWorld* hello;

class HelloWorld :public Frame {
private:
Button*greet;
public:
HelloWorld() : Frame(100,100,240,60,"My first frame") {
hello = this;
add(greet = new Button(20,20,200,20,"Greet!"));
hello->action = &executeTask;
run();
¥

private:

static void executeTask() {
hello->greet->setText ("Hello Word!");
+
i

int main() {
HelloWorld() ;
}

In this example, was created a pointer variable by means of the instruction: class HelloWorld*
hello. This instruction must be declared before the HelloWorld class definition.

Afterwards this declaration, the hello variable will save the HelloWorld address memory with de
instruction: hello = this wrote at the beginning of the HelloWorld constructor.

Now, the executeTask() method will can to show the wanted greeting (“Hello World!”) in the
button when the user does a click over it.

The instruction hello->greet->setText("Hello Word!") use the anchor hello to access to whatever
attribute of HelloWorld class.

The below image show the result after do click over the button.

My first frame b4

Hellao Word! h

	Introduction
	Requirements
	Getting Started
	Obtain the SimpleGUI API
	Compiling
	Creating a new SimpleGUI application
	SimpleGUI Frame
	SimpleGUI Widgets
	Event programming
	Sending message to SimpleGUI widgets

